

Projet COOLPARKS

Auline Rodler, Chargée de Recherche auline.rodler@cerema.fr

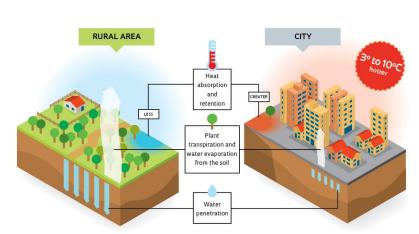
Consortium:

Porteur: Jérémy Bernard

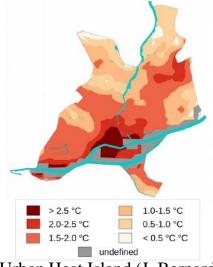
Cerema: Sihem Guernouti, Marjorie Musy, Auline Rodler

Soleneos : Benjamin Morille

Soutien:


Nantes Métropoles

Financement:


ADEME - 2019/2023

Contexte et enjeux du projet

- Réchauffement climatique de 1°C depuis 1870 et poursuite selon les prévisions du GIEC
- Fréquences/ intensité de canicules en hausse
- Le phénomène d'îlot de chaleur urbain (ICU) exacerbe les effets des périodes de canicule

Ref: EMPRI report 2017

Ref: Urban Heat Island (J. Bernard)

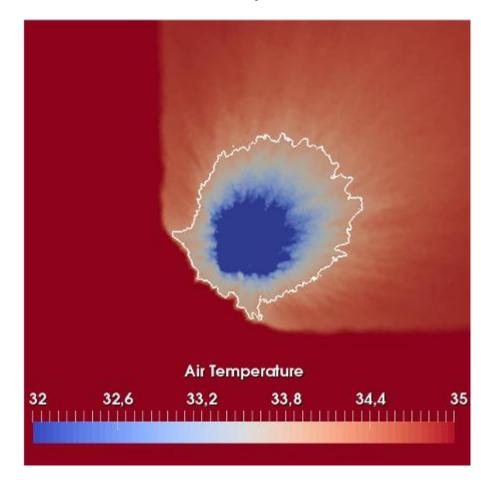
Contexte et enjeux du projet

Collectivités œuvrent pour développement de solutions vertes en milieu urbain: des zones humides naturelles, des réseaux de parcs urbains, des toits végétalisés et des solutions basées sur la nature → réduire les risques liés au changement climatique et améliorer la qualité de vie de la population urbaine

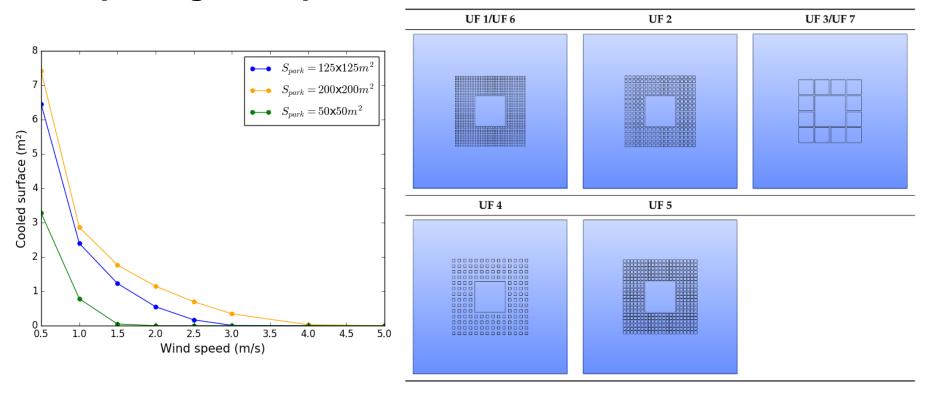
Objectifs

- Atténuer la surchauffe urbaine par des solutions basées sur la nature, en étudiant le phénomène de rafraîchissement apporté par les parcs publics
- Evaluer et quantifier le potentiel de rafraîchissement des parcs urbains (parcs, espaces publics végétalisés, jardins...), afin de faciliter leur conception dans le cadre des projets d'aménagement
- Eviter les surchauffes par les formes urbaines
- Quantifier l'impact de ses solutions basées sur la nature sur le confort et la consommation énergétique des bâtiments

14/11/2019


Objectifs

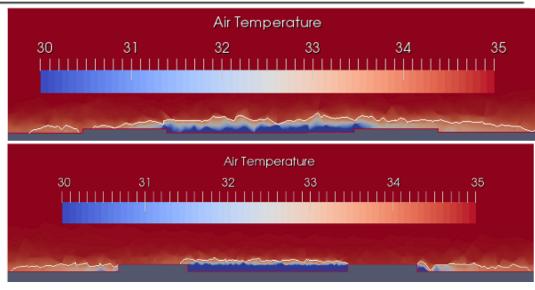
— Développer des connaissances et outil utilisable par les acteurs du projet urbain (collectivités locales, aménageurs, urbanistes, bureaux d'études, etc.) concernant la problématique de l'atténuation de l'effet d'îlot de chaleur urbain → mieux évaluer les avantages d'un choix d'aménagement par rapport à un autre au regard du critère microclimatique.


Conditions de simulation

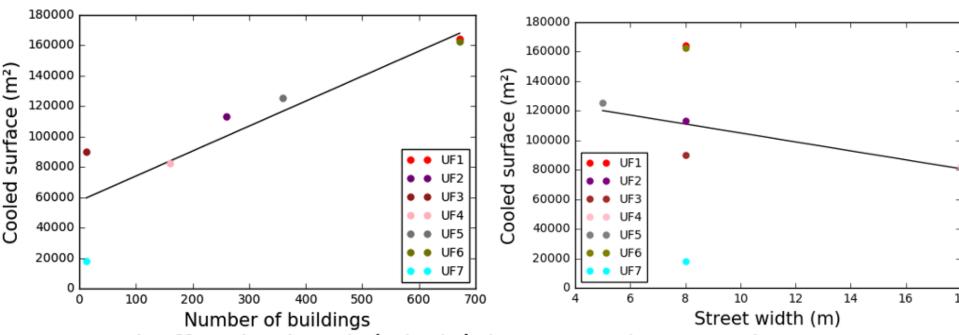
F = -300 w/m2F = 0T = 35 °C

Indicateur de performance

Effet de la taille du parc, de la vitesse du vent et de la morphologie du quartier


Morphologie du quartier

UF	Height (m)	Building Width (m)	Street Width (m)	D_B (%)	H/W	Number of Buildings
1	10	8	8	25 (low)	1.25	672
2	10	18	8	48 (medium)	1.25	260
3	10	96	8	85 (high)	1.25	12
4	10	18	18	25 (low)	0.56	160
5	10	18	5	95 (high)	2.00	360
6	17	8	8	25 (low)	2.12	672
7	4	96	8	85 (high)	0.50	12


H = 4

Effet de seuil

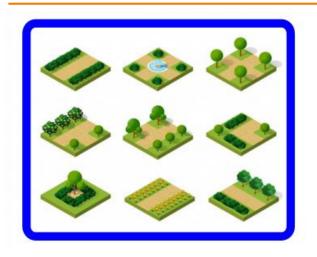
$$H = 10$$

Morphologie du quartier

- ⇒ pas d'effet de densité de bâtiment ou largeur de rue
- ⇒ effet probable de H/W (à Db et H constant)
- ⇒ plus d'effet de H au-delà d'un certain seuil
- ⇒ effet clair du nb bâti (nb rues)

Verrous scientifiques et techniques

- 1. Quantifier l'effet des caractéristiques du parc sur le rafraîchissement (notamment de combinaison d'éléments naturels relevé de terrain)
- 2. Identifier des indicateurs morphologiques impactant la diffusion (simulation)
- 3. Quantifier l'effet des parcs sur la consommation d'énergie des bâtiments alentour


Verrou technique : Développer et tester un outil d'aide à la décision permettant d'évaluer l'effet d'un parc sur la :

- diminution de température extérieur
- modification des consommations d'énergie / confort

Méthodologie

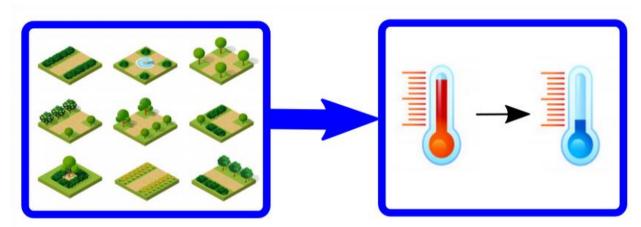
T. 2.1. Cartographie et caractérisation des parcs

Objectifs:

- Cartographier les parcs à l'échelle de l'agglomération nantaise
- Classifier les parcs à partir de leur caractéristiques ayant une influence sur le capacité de création de fraicheur Définition d'un méthodologie reproductible

- Etude bibliographique
- Recueil et synthèse de données existantes
- Relevé de terrain (SEVE)

T. 2.2. Évaluation de la création de fraîcheur (mesures)



Objectifs:

- variations T, RH et Ts au sein du parc
- évaluer fraîcheur générée par le parc
- évaluer gain de précision nouveau système de mesure **Méthode** :
- 3 stations mobiles dans les espaces identifiés au 2.1.
- comparaison à une station extérieure au parc (ONEVU)
- 2 jours / saisons tous les ans pour ≠ vitesses de vent
- 3 périodes de mesure (nuit avant lever du jour, fin AM, début PM)
- Métrologie: 1 station comportera plusieurs capteurs de ≠ taille / conditions de vent > 1 m/s et ensoleillement similaire (soleil ou ombre)

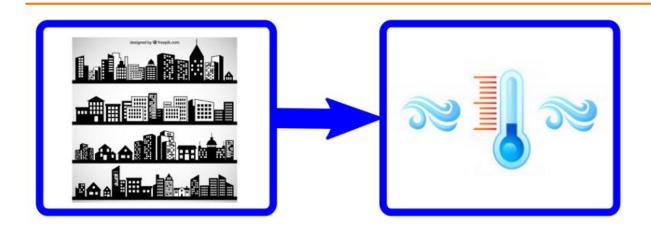
T. 2.2. Évaluation de la création de fraîcheur (modélisation)

Objectifs:

- Evaluer le potentiel de rafraichissement des différentes typologie de parc (disponibilité en eau, capacité de rétention en eau des sols, nature des aménagements (eau, minéral, végétal), le type de végétation) → un site humide sera propice à une végétation luxuriante avec une forte évapotranspiration
- Construire des corrélations entre caractéristiques des parcs et potentiel de rafraichissement

- Simulations numériques des différentes typologies / Etude paramétrique
- Comparaison avec données expérimentales

T. 2.3. Évaluation de la diffusion de fraîcheur (mesures)



Objectifs:

variations T, RH le long de plusieurs transects extérieurs au parc

- 3 stations mobiles (2 à 6 points de mesure le long de 4 à 6 transects)
- conditions de vent > 1 m/s et ensoleillement similaire (soleil ou ombre)
- comparaison à une station intérieure au parc (définie suite à 2.1.2)
- 2 jours / saisons tous les ans pour ≠ vitesses de vent
- 3 périodes de mesure (nuit avant lever du jour, fin AM, début PM)
- 1 station comportera plusieurs capteurs de ≠ taille

T. 2.3. Évaluation de la diffusion de fraîcheur (simulation)

Objectifs:

- Evaluer l'influence de la forme urbaine sur la diffusion de la fraicheur
- Construire des corrélations entre morphologie urbaine et diffusion de la fraicheur

- Simulations numériques des morphologies urbaines
- Comparaison avec données expérimentales pour le cas d'étude
- Etude paramétrique

T. 2.3. Impact de la fraicheur sur les besoins énergétiques des bâtiments et le confort

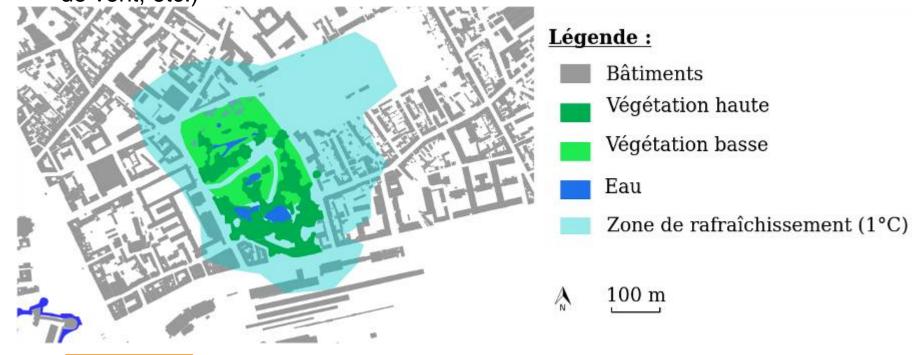
Objectifs:

- Evaluer l'influence de diffusion de la fraicheur sur le confort et les consommation de chauffage et froid dans les bâtiments
- Construire des corrélations entre typologies de bâtiments indicateurs et les morphologiques et de diffusion de la fraicheur précédents

14/11/2019

- Utilisation de fichier météorologiques 'corrigés' dans les STD (Tair)
- Prise en compte de la morphologie urbaine et l'environnement dans les STD
- Comparaison des résultats des STD avec données expérimentales / validation

T. 2.3. Impact de la fraicheur sur les besoins énergétiques des bâtiments et le confort



T. 3.1. Développement d'un outil à visée opérationnelle

Objectif :- dév. outil libre permettant d'évaluer l'effet d'un parc (rafraîchissement 1°C, besoin en eau mini, économie climatisation et réduction nb heures inconfort) à partir de données SIG

Données d'entrée :- empreinte + hauteur bâti- empreinte et type d'éléments rafraîchissant d'un parc- données météorologiques (T, RH, vitesse et direction de vent, etc.)

T. 3.2. Évaluation de l'outil dans un cas réel

Objectif : Comparaison "outil opérationnel / outil académique" au service de l'aide à la conception d'un parc et de son environnement urbain

Méthodologie:

Opération d'aménagement pour éprouver l'utilisation de l'outil Calculs réalisés à climat actuel et à climat futur Accompagner Nantes Métropole dans les choix de conception réalisés pour cette opération d'aménagement

FIN

MERCI

